Jawaban alyaa631. bahwa percepatan berbanding lurus dan arahnya berlawanan dengan simpangan. Hal ini merupakan karakteristik umum getaran harmonik. semoga membantu. Iklan. Getaran Fisika SMA – Dear All, kali ini kita belajar sedikit mengenati materi getaran di SMA. Masih ingatkah sobat apa itu getaran, fekuensi, dan periode? ngga pakai lama temukan jawabannya di uraian berikut Apa itu Getaran? Definisi dari getaran adalah gerak bolak balik back and forth motion yang terjadi secara periodik melalui suatu titik kesetimbangan. Getaran terjadi ketika ada gaya yang bekerja pada sebuah sistem benda elastis. Benda tersebut akan kembali ke titik kesetimbangannya setelah menerima gaya, begitu seterusnya. Yang dimaksud dengan titik kesetimbangan adalah titik saat resultan gaya yang bekerja pada benda sama dengan nol. Terjadinya sebuah getaran adalah peristiwa yang unik. Dari sebuah getaran bisa muncul berbagai besaran pokok dan turunan. Periode T adalah waktu yang diperlukan untuk sebuah getaran terjadi dengan atuan second. Frekuensi Getaran f adalah banyaknya getaran yang bisa terjadi dalam satu satuan waktu biasanya detik satuan Hertz Hz. Hubungan keduanya adalah berbanding terbalik. Periode adalah kebalikan dari frekuensi, dirumuskan Selain frekuensi dan periode ada juga namanya simpangan, kedudukan sutu titik terhadap titik kesetimbangan pada waktu tertentu. Simpangan terbesar dari sebuah getaran kemudian sobat kenal dengan nama amplitudo. Getaran Harmonik Sederhana Yang dimaksud getaran harmonik sederhana adalah sebuah getaran yang resultan gaya yang bekerja pada titik sembarang selalu mengarah pada titik keseimbangan. Besarnya gaya yang bekerja sebanding dengan jarak titik sembarang ke titik keseimbangan. Contoh getaran harmonik sederhana bisa sobat jumpai pada pegas dan pada ayunan. Perasamaan Simpangan, Kecepatan, dan Percepatan pada Getaran Dalam getaran harmonik ada besaran yang disebut simapangan, kecepatan harmonik, dan juga percepatan getarn harmonik. Simpangan paling besar dari sebuah getaran dapat dicapai benda Amplitudo atau simpangan maksimal Ym. Besarnya simpangan dirumuskan y = A sin t + θ0 A = amplitudo simpangan maksimal = frekuensi sudut θ0 = fase sudut awal Persamaan kecepatan pada getaran harmonik dapat sobat peroleh dari turunan persamaan simpanga baku terhadap waktu Vy = A cos t + θ0 ingat sobat turunan dari Sin f x adalah cos fx . f'x Sedangkan persamaan percepatan pada getaran harmonik adalah turunan pertama dari kecepatan atau turunan kedua dari sipangan ay = – 2A sin t + θ0 ingat sobat turunan dari Cos fx adalah -sin fx. f'x Sudut Fase, Fase, dan Besa Fase pada Getaran harmonik Apa itu fase, sudut fase, dan beda fase dalam getaran harmonik? Jika kita lihat dari persamaan sinpangan y = A sin t + θ0 atau bisa ditulis y = A sin 2 π t/T + θ0 yang dinamakan sudut fase adalah sudut 2 π t/T + θ0, ia dinotasikan dengan theta θ jadi rumus dari sudut fase adalah rumus di atas dapat ditulis juga nah yang kami kasih warna kuning adalah dinamakan fase getaran. Jika ketika t = t1 fase getaran adalah φ1 dan pada saat t = t2 fase getaran adalah φ2. Maka selisih fase tersebut dinamakan beda fase Δφ dirumuskan Contoh Soal Jika ada sebuat titik materi melakukan getaran harmonik sederhana dengan simpangan terbesar adalah A. Pada saat simpangannya 1/2 A √2, maka fase getaran titik tersebut terhadap garis keseimbangan adalah a. 1/4 d. 1/32 b. 1/8 e. 1/64 c. 1/16 Pembahasan Diketahui besarnya simpangan y = 1/2 A √2 A sin t + θ0 = 1/2 A √2 sin t + θ0 = 1/2 √2 sin θ = 1/2 √2 θ sudut fase = 45o = π/4 ingat sobat π = 180o hubungan sudut fase dengan fase adalah θ = 2π φ lihat rumus di atas π/4 = 2π φ 1/8 = φ Jadi fase getaran pada saat simpangan getaran 1/2 A √2 adalah 1/8 dari garis keseimbangan. Contoh soal dari Ujian Nasional 2002 Sebuah partikel bergeak harmonik dengan amplitudo 13 cm dan periode 0,1π sekon. Kecepatan partikel pada saat simpangannya 5 cm adalah? a. 2,4 m/s b. 2,4π m/s c. 2,4 m2 m/s d. 24 m/s e. 240 m/s Jawab diketahui A = 13 cm, T = 0,1π s, y = 5 cm untuk menjawab soal getaran di atas ada rumus cepat dari Vy = A cos t + θ0 ada aturan trigonometri cos2 x = 1-sin2x
gerakharmonik sederhana (ghs) gerak harmonik adalah gerak yang berulang-ulang pada suatu siklus terjadi saat suatu benda memiliki posisi kesetimbangan stabil dan sebuah gaya pemulih atau torsi yang bekerja jika benda tersebut dipindahkan dari kesetimbangannya.gerak harmonik sederhana mempunyai persamaan gerak dalam bentuk
Apakah kalian pernah melihat gerakan pada bandul atau per? Kedua gerakan yang kalian amati tersebut tergolong ke dalam gerak harmonik sederhana. Ini adalah gerakan bolak-balik di sekitar titik keseimbangannya. Kalau kalian perhatikan, bandul memiliki titik kesetimbangan di tengah, karena walaupun kecepatannya menurun, bandul akan tetap bergerak di sekitar titik kesetimbangan tersebut. Gerak harmonik sederhana memiliki amplitudo simpangan maksimum dan frekuensi yang tetap. Gerak ini bersifat periodik. Setiap gerakannya akan terjadi secara berulang dan teratur dalam selang waktu yang sama. Dalam gerak harmonik sederhana, resultan gayanya memiliki arah yang selalu sama, yaitu menuju titik kesetimbangan. Gaya ini disebut dengan gaya pemulih. Besar gaya pemulih berbanding lurus dengan posisi benda terhadap titik kesetimbangan. Beberapa karakteristik gerak ini diantaranya adalah dapat dinyatakan dengan grafik posisi partikel sebagai fungsi waktu berupa sinus atau kosinus. Gerak ini juga dapat ditinjau dari persamaan simpangan, persamaan kecepatan, persamaan kecepatan, dan persamaan energi gerak yang dimaksud. Baca juga Besaran-Besaran dalam Konsep Gerak Lurus Berdasarkan karakteristik tersebut, gerak harmonik sederhana memiliki simpangan, kecepatan, percepatan, dan energi. Simpangan Simpangan getaran harmonik sederhana dapat dianggap sebagai proyeksi partikel yang bergerak melingkar beraturan pada diameter lingkaran. Secara umum, persamaan simpangan dalam gerak ini adalah sebagai berikut. y = simpangan getaran m = kecepatan sudut rad/s T = periode s f = frekuensi Hz t = waktu tempuh s A = amplitudo/simpangan maksimum m Kecepatan Kecepatan merupakan turunan pertama dari posisi. Pada gerak harmonik sederhana, kecepatan diperoleh dari turunan pertama persamaan simpangan. Persamaan kecepatan dapat dijabarkan sebagai berikut. Percepatan Percepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan kecepatan atau turunan kedua persamaan simpangan. Persamaan percepatan dapat diperoleh sebagai berikut. Simpangan maksimum memiliki nilai yang sama dengan amplitudo y = A, sehingga percepatan maksimumnya adalah am= – Aw Energi Persamaan energi pada gerak harmonik sederhana meliputi energi kinetik, energi potensial, dan energi mekanik. Energi kinetik benda dapat dirumuskan sebagai berikut. Energi potensial benda dapat dirumuskan sebagai berikut. Sementara itu, energi mekanik adalah penjumlahan dari energi kinetik dan energi potensial. k = nilai ketetapan N/m = kecepatan sudut rad/s A = amplitudo m t = waktu tempuh s Jumlah energi potensial dan energi kinetik benda yang bergerak harmonik sederhana selalu bernilai tetap. Please follow and like us Kelas Pintar adalah salah satu partner Kemendikbud yang menyediakan sistem pendukung edukasi di era digital yang menggunakan teknologi terkini untuk membantu murid dan guru dalam menciptakan praktik belajar mengajar terbaik. Gerakharmonik sederhana adalah gerak bolak - balik benda melalui suatu titik keseimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Pengertian ini diambil dari internet. Simbol g digunakan sebagai satuan percepatan. Dalam fisika s2 (meter per detik 2 2. Gerak Harmonik Sederhana – Gerakan harmonik ini yakni mempunyai suatu amplitudo konstan deviasi maksimum dan frekuensi. Pergerakan itu periodik. Setiap gerakan diulangi dan dilakukan terus menerus pada interval waktu sama. Dengan gerakan harmonik sederhana, gaya yang dihasilkan persis arah yang sama dengan yang mendekati arah keseimbangan. Gaya ini disebut gaya pemulihan. Gaya pemulih berbanding lurus dengan posisi objek sehubungan dengan keseimbangan. Apa itu Gerak Harmonik Sederhana ?Karakteristik Gerakana. Simpanganb. Kecepatanc. Energid. PercepatanSyarat Getaran HarmonikPeriode dan Frekuensi Getaran Harmonika. Periode dan Frekuensi Bandul Sederhanab. Periode dan Frekuensi Sistem Pegas Pengertian Gerak Harmonik Sederhana merupakan bahwa objek berubah secara konstan pada titik kesetimbangan, jumlah getaran per detik harus konstan atau sama. Gerakan harmonik ini yakni dapat disebabkan oleh benda yang memiliki kekuatan mereka dapat mendorong atau menarik dan memiliki kekuatan penyembuhan, misalnya dalam memperluas dan memecah pegas dari titik setimbang karena kekuatan. Jika pada musim semi getaran, gaya awal dihubungkan dengan hukum kait. Dalam konsep gerakan harmonik ada beberapa besaran fisik yang diperoleh dari objek berosilasi, yakni Simpangan y = Jarak benda dalam dari kesetimbanganPeriode T = Banyaknya dalam waktu yang satu getaranFrekuensi f = Getaran setiap waktuAmplitude A = Simpangan yang maksimum Dengan materi ini adanya berbagai kondisi sebagai terjadinya suatu fenomena yang disebut sebagai gerakan harmonik sederhana, yakni Getaran mempercepat atau memaksa aksi menuju untuk mengembalikan inersia yang dapat menyebabkan overshoot melewati posisi dalam adanya suatu keseimbangan. Karakteristik Gerakan Berdasarkan karakteristik adanya berbagai karakteristik dalam gerakan tersebut, yakni a. Simpangan Simpangan dalam getaran harmonik ringan bisa dilihat sebagai prediksi partikel bergerak dalam bentuk lingkaran dengan diameter lingkaran. Secara umum, rumus untuk penyimpangan dalam gerakan adalah sebagai berikut. y = Simpangan getaran mT = Periode s = Kecepatan sudut rad/sf = Frekuensi HzA = Amplitudo/simpangan maksimum m b. Kecepatan Kecepatan adalah turunan dari posisi pertama. Untuk gerakan harmonik sederhana, kecepatan yang dapat diturunkan dari turunan pertama dari rumus deviasi. c. Energi Persamaan energi dalam gerakan harmonik sederhana termasuk energi kinetik, energi potensial dan energi mekanik. Energi kinetik dapat diringkas sebagai berikut. k = Nilai ketetapan N/mA = Amplitudo m = Kecepatan sudut rad/st = Waktu tempuh s Jumlah energi potensial dan energi kinetik dari objek bergerak dalam harmoni sederhana tetap merupakan nilai konstan. d. Percepatan Percepatan terhadap suatu objek kopling harmonik sederhana dapat diperoleh dari turunan pertama dari rumus kecepatan atau turunan kedua dari persamaan deviasi. Persamaan percepatan dapat diperoleh sebagai berikut. Deviasi maksimum memiliki nilai yang sama dengan amplitudo y = A, oleh karena itu percepatan maksimumnya ialah am=- Aw Syarat Getaran Harmonik Kebutuhan akan gerakan bicara adalah getaran harmonis, termasuk Gerakan periodik mundur.Gerakannya selalu melewati posisi atau memaksakan efek pada objek yang sebanding dengan posisi atau dalam penyimpangan akselerasi atau gaya yang bekerja pada suatu benda menciptakan keseimbangan. Periode dan Frekuensi Getaran Harmonik Adapun dengan berbagai periode dan frekuensi dalam getaran ini, diantaranya ialah sebagai berikut a. Periode dan Frekuensi Bandul Sederhana Sebuah pendulum sederhana terdiri dari massa yang digantungkan di ujung tali ringan massa terabaikan dari 1. Ketika beban ditarik ke satu sisi dan dilepaskan, beban memecah titik kesetimbangan ke sisi lainnya. Jika amplitudo ayunan rendah, bandul menciptakan getaran harmonis. Frekuensi dan frekuensi osilasi di pendulum sama dengan di musim semi. Artinya, waktu dan frekuensi dapat dihitung dengan membandingkan kekuatan pemulihan dan centripetal. b. Periode dan Frekuensi Sistem Pegas Padahal, gerakan harmonik adalah gerakan melingkar tidak beraturan di salah satu gelombang utama. Oleh karena itu, waktu dan frekuensi dalam pegas dapat dihitung dengan menambahkan gaya pemulihan F = -kX dan gaya sentripetal F = -4π2 mf2X. Durasi dan frekuensi sistem beban pegas hanya bergantung dalam suatu massa dan konstanta pegas. Baca Juga Demikianlah pembahasan kali ini, yang telah kami sampaikan secara lengkap dan jelas yakni mengenai Gerak Harmonik Sederhana. Semoga ulasan ini, dapat berguna dan bermanfaat bagi Anda semuanya.
Olehkarena A sin (ωt + θ 0) merupakan fungsi y, persamaan percepatan gerak harmonik dapat ditulis sebagai berikut.. ay = -ω 2 y. Tanda negatif menunjukkan bahwa arah percepatan selalu berlawanan dengan arah simpangan. Percepatan maksimum gerak harmonik sederhana terjadi ketika nilai sin (ωt + θ 0) = 1.Dengan demikian, percepatan maksimum gerak harmonik sederhana dirumuskan:
FisikaGelombang Mekanik Kelas 10 SMAGetaran HarmonisKarakteristik Getaran Harmonis Simpangan, Kecepatan, Percepatan, dan Gaya Pemulih, Hukum Kekekalan Energi Mekanik pada Ayunan Bandul dan Getaran PegasDalam gerak harmonik, pernyataan di bawah ini yang paling benar.... A percepatan terkecil di titik balik B kecepatan terkecil di titik seimbang C percepatan terkecil di titik seimbang D kecepatan terbesar di titik balik E kecepatan sama di setiap tempat Karakteristik Getaran Harmonis Simpangan, Kecepatan, Percepatan, dan Gaya Pemulih, Hukum Kekekalan Energi Mekanik pada Ayunan Bandul dan Getaran PegasGetaran HarmonisGelombang MekanikFisikaRekomendasi video solusi lainnya0334Sebuah partikel bergerak harmonik dengan amplitudo 13 cm ...Sebuah partikel bergerak harmonik dengan amplitudo 13 cm ...0050Persamaan antara getaran dan gelombang adalah .... 1 ke...Persamaan antara getaran dan gelombang adalah .... 1 ke...0050Panjang sebuah bandul 40 cm . Bandul disimpangkan dengan...Panjang sebuah bandul 40 cm . Bandul disimpangkan dengan...0253Sebuah benda yang diikat dengan seutas benang hanya dapat...Sebuah benda yang diikat dengan seutas benang hanya dapat...
Vmerupakan kecepatan ya. Rumus kecepatan v pada gerak harmonik sederhana adalah A sin wt, kemudian diturunkan menjadi A w cos wt. Persamaan Percepatan pada GHS. Persamaa percepatan pada GHS adalah turunan kecepatan terhadap waktu. a = dv/dt. a = d(Aw cos wt)/dt. a = -Aw 2 sin wt. karena. y = A sin wt. maka. a = -w 2 y. Dalam persamaan atau rumus Gerak Harmonik Sederhana juga berhubungan dengan percepatan.
PertanyaanDalam satu kali getaran, berapa kali gerak harmonis nilai percepatannya mengalami maksimum?Dalam satu kali getaran, berapa kali gerak harmonis nilai percepatannya mengalami maksimum? YSMahasiswa/Alumni Universitas Jenderal SoedirmanJawabanpada satu kali getaran percepatan maksimum terjadi sebanyak 2 satu kali getaran percepatan maksimum terjadi sebanyak 2 gerak harmonik, percepatan maksimum terjadi ketika nilai y = A sesuai persamaan . Dalam satu kali getaran, benda mencapai posisi amplitudo sebanyak 2 kali. Oleh karena itu, benda mengalami 2 kali percepatan maksimum. Jadi, pada satu kali getaran percepatan maksimum terjadi sebanyak 2 gerak harmonik, percepatan maksimum terjadi ketika nilai y = A sesuai persamaan . Dalam satu kali getaran, benda mencapai posisi amplitudo sebanyak 2 kali. Oleh karena itu, benda mengalami 2 kali percepatan maksimum. Jadi, pada satu kali getaran percepatan maksimum terjadi sebanyak 2 kali. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!371Yuk, beri rating untuk berterima kasih pada penjawab soal! C Getaran Harmonik Sederhana Gerak getaran yang paling sederhana adalah getaran harmonik. Salah satu contoh getaran harmonik adalah gerak yang dialami oleh benda yang digantungkan pada pegas vertikal seperti dalam gambar 2 Gambar 2 Benda Pada Pegas Vertikal[9] Pada gambar 2 (a) pegas vertikal tak teregang, (b) pegas teregang sebesar y 0 =
College Loan Consolidation Wednesday, December 17th, 2014 - Kelas XI Getaran harmonik atau getaran selaras memiliki ciri frekuensi getaran yang tetap. Pernahkan kita mengamati apa yang terjadi ketika senar gitar dipetik lalu dilepaskan? kita akan melihat suatu gerak bolak-balik melewati lintasan yang sama. Gerakan seperti ini dinamakan gerak periodik. Contoh lain gerak periodik adalah gerakan bumi mengelilingi matahari revolusi bumi, gerakan bulan mengelilingi bumi, gerakan benda yang tergantung pada sebuah pegas, dan gerakan sebuah bandul. Di antara gerak periodik ini ada gerakan yang dinamakan gerak Pengertian Getaran Harmonik Gerak harmonik merupakan gerak sebuah benda dimana grafik posisi partikel sebagai fungsi waktu berupa sinus dapat dinyatakan dalam bentuk sinus atau kosinus. Gerak semacam ini disebut gerak osilasi atau getaran harmonik. Contoh lain sistem yang melakukan getaran harmonik, antara lain, dawai pada alat musik, gelombang radio, arus listrik AC, dan denyut jantung. Galileo di duga telah mempergunakan denyut jantungnya untuk pengukuran waktu dalam pengamatan gerak. Gerak benda pada lantai licin dan terikat pada pegas untuk posisi normal a, teregang b, dan tertekan c Untuk memahami getaran harmonik, kita dapat mengamati gerakan sebuah benda yang diletakkan pada lantai licin dan diikatkan pada sebuah pegas . Anggap mula-mula benda berada pada posisi X = 0 sehingga pegas tidak tertekan atau teregang. Posisi seperti ini dinamakan posisi keseimbangan. Ketika benda ditekan ke kiri X = – pegas akan mendorong benda ke kanan, menuju posisi keseimbangan. Sebaliknya jika benda ditarik ke kanan, pegas akan menarik benda kembali ke arah posisi keseimbangan X = +. Gaya yang dilakukan pegas untuk mengembalikan benda pada posisi keseimbangan disebut gaya pemulih. Besarnya gaya pemulih menurut Robert Hooke dirumuskan sebagai berikut. Fp = -kX Tanda minus menunjukkan bahwa gaya pemulih selalu pada arah yang berlawanan dengan simpangannya. Jika kita gabungkan persamaan di atas dengan hukum II Newton, maka diperoleh persamaan berikut. Fp = -kX = ma atau Terlihat bahwa percepatan berbanding lurus dan arahnya berlawanan dengan simpangan. Hal ini merupakan karakteristik umum getaran harmonik. Syarat Getaran Harmonik Syarat suatu gerak dikatakan getaran harmonik, antara lain Gerakannya periodik bolak-balik. Gerakannya selalu melewati posisi keseimbangan. Percepatan atau gaya yang bekerja pada benda sebanding dengan posisi/simpangan benda. Arah percepatan atau gaya yang bekerja pada benda selalu mengarah ke posisi keseimbangan. Periode dan Frekuensi Getaran Harmonik a. Periode dan Frekuensi Sistem Pegas kita telah mempelajari gerak melingkar beraturan di kelas X. Pada dasarnya, gerak harmonik merupakan gerak melingkar beraturan pada salah satu sumbu utama. Oleh karena itu, periode dan frekuensi pada pegas dapat dihitung dengan menyamakan antara gaya pemulih F = -kX dan gaya sentripetal F = -4π 2 mf2X. -4π 2 mf2X = -kX 4π 2 mf2 = k Periode dan frekuensi sistem beban pegas hanya bergantung pada massa dan konstanta gaya pegas. b. Periode dan Frekuensi Bandul Sederhana Sebuah bandul sederhana terdiri atas sebuah beban bermassa m yang digantung di ujung tali ringan massanya dapat diabaikan yang panjangnya l. Jika beban ditarik ke satu sisi dan dilepaskan, maka beban berayun melalui titik keseimbangan menuju ke sisi yang lain. Jika amplitudo ayunan kecil, maka bandul melakukan getaran harmonik. Periode dan frekuensi getaran pada bandul sederhana sama seperti pada pegas. Artinya, periode dan frekuensinya dapat dihitung dengan menyamakan gaya pemulih dan gaya sentripetal. Gaya yang bekerja pada bandul sederhana Persamaan gaya pemulih pada bandul sederhana adalah F = -mg sinθ . Untuk sudut θ kecil θ dalam satuan radian, maka sin θ = θ . Oleh karena itu persamaannya dapat ditulis F = -mg . Karena persamaan gaya sentripetal adalah F = -4π 2 mf2X, maka kita peroleh persamaan sebagai berikut. -4π 2 mf2X = -mg 4π 2 f2 = Periode dan frekuensi bandul sederhana tidak bergantung pada massa dan simpangan bandul, tetapi hanya bergantung pada panjang tali dan percepatan gravitasi setempat. Persamaan Getaran Harmonik Persamaan getaran harmonik diperoleh dengan memproyeksikan gerak melingkar terhadap sumbu untuk titik yang bergerak beraturan. a. Simpangan Getaran Harmonik Simpangan getaran harmonik sederhana dapat dianggap sebagai proyeksi partikel yang bergerak melingkar beraturan pada diameter lingkaran. Gambar diabawah melukiskan sebuah partikel yang bergerak melingkar beraturan dengan kecepatan sudut dan jari-jari A. Anggap mula-mula partikel berada di titik P. Proyeksi gerak melingkar beraturan terhadap sumbu Y merupakan getaran harmonik sederhana. Perhatikan gambar diatas. Setelah selang waktu t partikel berada di titik Q dan sudut yang ditempuh adalah θ = t = . Proyeksi titik Q terhadap diameter lingkaran sumbu Y adalah titik Qy. Jika garis OQy kita sebut y yang merupakan simpangan gerak harmonik sederhana, maka kita peroleh persamaan sebagai berikut. Y = A sin θ = A sin t = A sin Besar sudut dalam fungsi sinus θ disebut sudut fase. Jika partikel mula-mula berada pada posisi sudut θ0, maka persamaanya dapat dituliskan sebagai berikut. Y = A sin θ = A sin t + θ0 = A sin +θ0 Sudut fase getaran harmoniknya adalah sebagai berikut. Karena Φ disebut fase, maka fase getaran harmonik adalah sebagai berikut. Apabila sebuah benda bergetar harmonik mulai dari t = t1 hingga t = t2, maka beda fase benda tersebut adalah sebagai berikut. Beda fase dalam getaran harmonik dinyatakan dengan nilai mulai dari nol sampai dengan satu. Bilangan bulat dalam beda fase dapat dihilangkan, misalnya beda fase 2¼ ditulis sebagai beda fase ¼. b. Kecepatan Getaran Harmonik Kecepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan simpangan. Mengingat nilai maksimum dari fungsi cosinus adalah satu, maka kecepatan maksimum vmaks gerak harmonik sederhana adalah sebagai berikut. vmaks = A c. Percepatan Getaran Harmonik Percepatan benda yang bergerak harmonik sederhana dapat diperoleh dari turunan pertama persamaan kecepatan atau turunan kedua persamaan simpangan. ay = A [- sin wt + θ 0] ay = - 2A sin t + θ 0 ay = - 2y Karena nilai maksimum dari simpangan adalah sama dengan amplitudonya y = A, maka percepatan maksimumnya amaks gerak harmonik sederhana adalah sebagai berikut. amaks = – 2 A Energi Getaran Harmonik Benda yang bergerak harmonik memiliki energi potensial dan energi kinetik. Jumlah kedua energi ini disebut energi mekanik. a. Energi Kinetik Gerak Harmonik Cobalah kita tinjau lebih lanjut energi kinetik dan kecepatan gerak harmoniknya. Karena Ek =½ mvy2 dan vy = A cos t, maka Energi kinetik juga dapat ditulis dalam bentuk lain seperti berikut. Ek maks = m 2 A2, dicapai jika cos2 t = 1. Artinya, t harus bernilai , , …, dan seterusnya. y = A cos t y = A cos y = A di titik setimbang Ek min = 0, dicapai bila cos2 t = 0. Artinya, t harus bernilai 0, π , …, dan seterusnya. y = A cos t y = A cos 0 y = A di titik balik Jadi, energi kinetik maksimum pada gerak harmonik dicapai ketika berada di titik setimbang. Sedangkan energi kinetik minimum dicapai ketika berada di titik balik. b. Energi Potensial Gerak Harmonik Besar gaya yang bekerja pada getaran harmonik selalu berubah yaitu berbanding lurus dengan simpangannya F = ky. Secara matematis energi potensial yang dimiliki gerak harmonik dirumuskan sebagai berikut. Ep = ky2 Ep = m 2 A sin t2 Ep = m 2 A2 sin2 t Ep maks = m 2 A2 dicapai jika sin2 t = 1. Artinya t harus bernilai , 3, … , dan seterusnya y = A sin y = A di titik balik Ep min = 0, dicapai jika sin2 t = 0. Artinya, t harus bernilai 0, π , …, dan seterusnya. y = A sin t y = A sin 0 y = 0 di titik setimbang c. Energi Mekanik Gerak Harmonik Energi mekanik sebuah benda yang bergerak harmonik adalah jumlah energi kinetik dan energi potensialnya. Berdasarkan persamaan diatas, ternyata energi mekanik suatu benda yang bergetar harmonik tidak tergantung waktu dan tempat. Jadi, energi mekanik sebuah benda yang bergetar harmonik dimanapun besarnya sama. Em = Ek maks = Ep maks Em = m 2 A2 = k A2 Kedudukan gerak harmonik sederhana pada saat Ep dan Ek bernilai maksimum dan minimum. d. Kecepatan Benda yang Bergetar Harmonik Untuk menghitung kecepatan maksimum benda atau pegas yang bergetar harmonik dapat dilakukan dengan menyamakan persamaan kinetik dan energi total mekaniknya dimana Ek = Em. Sedangkan untuk menghitung kecepatan benda di titik sembarang dilakukan dengan menggunakan persamaan kekekalan energi mekanik
6OwSu.
  • fgim1ij7le.pages.dev/351
  • fgim1ij7le.pages.dev/97
  • fgim1ij7le.pages.dev/499
  • fgim1ij7le.pages.dev/396
  • fgim1ij7le.pages.dev/114
  • fgim1ij7le.pages.dev/180
  • fgim1ij7le.pages.dev/579
  • fgim1ij7le.pages.dev/250
  • dalam getaran harmonik percepatan getaran